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Continuous quantum measurement of a Bose-Einstein condensate:
A stochastic Gross-Pitaevskii equation
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We analyze the dynamics of a Bose-Einstein condensate undergoing a continuous dispersive imaging by
using a Lindblad operator formalism. Continuous strong measurements drive the condensate out of the
coherent-state description assumed within the Gross-Pitaevskii mean-field approach. Continuous weak mea-
surements allow us instead to replace, for time scales short enough, the exact problem with its mean-field
approximation through a stochastic analog of the Gross-Pitaevskii equation. The latter is used to show the
unwinding of a dark soliton undergoing a continuous imaging.
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I. INTRODUCTION

The interplay between quantum and classical descript
of the physical world and the role of the measurement p
cess are still at the heart of the understanding of quan
mechanics @1#. The related theoretical debate has be
greatly enriched in recent decades by the realization of n
experimental techniques aimed at producing quantum st
without classical analog, such as entangled or squee
states, or exploring phenomena which are intrinsica
quantum-mechanical, such as quantum jumps. All this
curred also keeping in mind practical implications, such
the improvement of the sensitivity of various devices op
ating at or near the quantum limit@2,3#.

Recently, the production of a novel state of matter—Bo
Einstein condensates of dilute atomic gases—has open
new road to explore macroscopic quantum phenomena
the precision characteristic of atomic physics@4#. Bose-
Einstein condensates are naturally produced by cooling d
atomic gases at ultralow temperature with the phase tra
tion occurring in the 100 nK–1mK temperature range, i.e
when the thermal de Broglie wavelength becomes com
rable to the average spacing between the atoms of a d
~peak density 101321015 atoms/cm3) trapped gas. Usually
samples of Bose-Einstein condensates are made by3

2108 atoms in the case of alkali-metal species@4#, and 109

or more in the case of hydrogen@5#. Their intrinsically small
heat capacity does not allow for a direct manipulation a
probing with material samples, such as microtips or na
structures, since the thermal contact with the latter will
duce a sudden evaporation of the Bose sample. Thus,
nipulation and probing of Bose-Einstein condensates
been achieved so far only by using light beams. These pro
can be classified according to the resonant or nonreso
nature of their interaction with the measured atomic sam
In the former case, the condensate interacts with a laser b
resonant~or close to resonant! with a selected atomic trans
tion. The output beam is attenuated proportionally to the
tical thickness of the condensate~also called column den
1050-2947/2002/65~5!/053604~12!/$20.00 65 0536
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sity!, i.e., the condensate density integrated along the line
sight of the impinging beam. The absorption of the photo
leads to a recoil of the atoms, which strongly perturbs
condensate. For typical values of intensity and duration
the probe light, the condensate is strongly heated and a
replica has to be produced to further study its dynam
From the viewpoint of quantum measurement theory, t
measurement is of type II since it destroys the state of
observed system and forbids the study of the dynamics
single quantum system@6#. An alternative technique, calle
dispersive imaging, allows for repeated measurements o
Bose-Einstein condensate and, as an extreme case, its
tinuous monitoring. In this measurement scheme, o
resonance light is scattered by the condensate, thereby
cally inducing optical phase shifts which can be conver
into light intensity modulations by homodyne or heterody
techniques, for instance by using phase contrast@7#, modu-
lation spectroscopy@8,9#, and interference@10# techniques
~for a similar nondestructive imaging technique based up
polarimetry, see@11#!. Since the laser beam is off-resonan
the absorption rate is small and the heating of the conden
is accordingly small. Thus, multiple shots of the same c
densate can be taken—a type-I measurement in the qua
measurement theory language—allowing the study of the
namics on the same sample. This has allowed us to overc
the unavoidable shot-to-shot fluctuations always presen
the production of different samples of Bose-Einstein cond
sates. Several phenomena whose observations are b
upon imaging the condensate at high accuracy, such a
formation in nonadiabatic conditions@12#, short- @13# and
long- @14# wavelength collective excitations, superfluid d
namics@15#, and vortices formation and decay@16,17#, can
be successfully studied with this technique.

The repeated nondestructive monitoring lends itself to
other question:is the measurement process influencing
dynamics of the condensate?Answers to this question ar
important also for disentangling the intrinsic condensate
namics from the artifacts induced by the underlying me
surement process. As we will see in this paper, the effec
the measurement can also be intentionally amplified to al
©2002 The American Physical Society04-1
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for unusual manipulation of the condensate itself. Dispers
imaging, in its more idealized form, is preserving the num
of atoms and therefore represents a particular exampl
quantum nondemolition~QND! measurement@2,18,19#. We
know that even quantum nondemolition measurements a
the state of the observed system, their unique feature b
that the nondemolitive observable maintains the sameaver-
age value, albeit the probability distribution of its outcom
can be affected as well as the average values of all the
jugate observables. Thus, we do expect that during the n
demolitive measurement of the condensate atom num
there will be a measurement-induced nontrivial dynamics
both the variance of the monitored observable and the a
age values of all conjugate observables. Besides gaining
sight into the dynamics of the measurement process,
model allows for a description of theirreversibledriving of
the condensate toward nonclassical states.

In this paper, we try to answer the question formula
above by building a realistic model for dispersive measu
ments of the condensate, extending the results reporte
@20# to the weak measurement regime. The plan of the pa
is as follows. In Sec. II, we introduce the dispersive coupl
between atoms and light and derive the reduced master e
tion for the Bose condensate tracing out the variables of
electromagnetic field degrees of freedom. Under controlla
approximations, we obtain a Lindblad equation which allo
us to estabilish the rates for phase diffusion and depletio
the condensate during the dispersive imaging. In Sec. III,
unravel the Lindblad equation by neglecting the deplet
term, obtaining a stochastic differential equation that, in
unmeasured case, corresponds to the description of a s
N-body wave function. A solution of the stochasticN-body
equation is discussed in the limit of strong continuous m
surement, leading to the squeezing of number fluctuatio
the main result is described in@20#. In the opposite limit of
weak measurement and for an initial mean-field state,
stochastic equation becomes the stochastic counterpart o
Gross-Pitaevskii equation, as discussed in Sec. IV. Its limi
validity is discussed in Sec. V by comparing its evolution f
various parameters versus the exact evolution in the sim
situation of a two-mode system schematizing a condensa
a double well potential. This allows us to analyze, in Sec.
the effect of the measurement on the evolution of a cond
sate initially prepared in a soliton state. More general c
siderations on the potentiality of such an approach and
consequences are finally outlined in the conclusions.

II. MASTER EQUATION FOR DISPERSIVE IMAGING
OF A BOSE CONDENSATE

Our main goal in this section is to include the atom
photon interaction present in the dispersive imaging o
Bose-Einstein condensate into its intrinsic dynamics. F
attempts in this direction have been discussed in the pr
typical situation of a two-mode condensate in@21,22#. Let us
start the analysis with the effective interaction Hamiltoni
between the off-resonant photons and the atoms, written
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H int5
e0x0

2 E d3x n~x!:E2:, ~1!

wheren is the density operator of the atomic vapor andE is
the electric field due to the intensityI of the incoming light.
The coefficientx0 represents the effective electric suscep
bility of the atoms defined asx05l3d/2p2(11d2), where
we have introduced the light wavelengthl and the light
detuning measured in half-linewidthsG/2 of the atomic tran-
sition, d5(v2vat)/(G/2).

We express the electric field in terms of creation and
nihilation operators. In the Coulomb gauge, it takes the fo

E~x,t !5 i(
k
A \vk

2e0L3
@akexp~2 ivkt1 ik•x!

2ak
†exp~ ivkt2 ik•x!#, ~2!

wherevk5cuku, @ak ,ak8
†

#5dk,k8 , andL3 is the quantization
volume. Equation~1! allows us to write the reduced mast
equation for the atomic degrees of freedom by a stand
technique, i.e., by tracing out the photon degrees of freed
@23#. The decoupling between the two relevant time sca
for the photons~settled by the lifetime of spontaneous em
sion, of order of tens ns! and for the atoms~related to the
oscillation period in the trapping potential, of the order
ms!, allows us to use the Born-Markov approximation. Th
we get the master equation for the reduced density matrr
of the condensate that, in the interaction picture, is written

dr

dt
5

i

\
TrR@r~ t ! ^ rR~ t !,H int#2

1

\2
TrR

3FH int~ t !,F E
2`

t

dt8H int~ t8!,r~ t ! ^ rR~ t !G G . ~3!

The last term on the right-hand side contains two differ
contributions both of Lindblad type,L1r and L2r. As we
will see soon, the former preserves the number of atom
the condensate and is responsible for phase-diffusion p
nomena, while the latter changes the number of atoms le
ing to its depletion.

Let us first concentrate on phase diffusion, which is
number-conserving mechanism. To calculate it, we insert
interaction Hamiltonian into the last term of Eq.~3!, with n
the condensate density operator. By introducing the Fou
transform of the density operator such that

n~x!5(
q

ñ~q!

AL3
exp~ iq•x!, ~4!

we obtain
4-2
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L1r5
px0

2

2L3c
(
k,p

Avkvpd~k2p! (
k8,p8

Avk8vp8e
ict(k82p8)

3@ ñ~k82p8!ñ~k2p!r^ak8
† ap8ak

†ap&

2ñ~k82p8!rñ~k2p!^ak
†apak8

† ap8&

2ñ~k2p!rñ~k82p8!^ak8
† ap8ak

†ap&

1rñ~k2p!ñ~k82p8!^ak
†apak8

† ap8&#, ~5!

where^ &5TrR@rR•••#. The photons are assumed to be in
coherent plane-wave state with momentum along the imp
ing direction, corresponding to a wave vectork5k0ẑ or-
thogonal to the imaging planex-y. Hence

^ak8
† ap&5

L3I

c2\k0

dk8,pdp,k0
, ~6!

where we have written the mean numbers of photons
mode k0 in terms of the intensity of the incoming beam
Expressing the expectation values in normal ordering
using the fact that phase-diffusion processes conserve
number of bosons in the condensate, it is possible to s
that all normal ordered expectation values involving four o
erators cancel exactly, obtaining

L1r5
px0

2Ik0

2\c S L

2p D 3

3E d3k d~ uk1k0u2k0!†ñ~2k!,@ ñ~k!,r#‡, ~7!

where we have used the continuum limit(k
→(L/2p)3*d3k. Unless tomographic techniques are us
as, for instance in@24#, the image results from a projection o
the condensate onto thex-y plane, by integrating along thez
direction. This requires us to project the dynamics of
condensate into the imaging plane. In order to write a clo
2D master equation to describe thex-y dynamics, we assum
the condensate wave function to be factorizable
c(x,y,z)5f(x,y)L(z). Such factorization holds if the con
finement in thez direction is strong enough to make th
corresponding mean-field energy negligible with respec
the energy quanta of the confinement, i.e.,\vz@gr̃, where
g54p\2a/m, with a the s-wave scattering length,r̃ the
condensate density, andvz the angular frequency of the con
finement harmonic potential along thez direction, as recently
demonstrated experimentally in@25#. We write ñ(k)
5ñ(k')ñ(kz) and we will use a Gaussian ansatz for t
density profile along thez direction, namely

ñ~kz!5A2p

L
expS 2

j2kz
2

2 D , ~8!

wherej is the length scale of the condensate in thez direc-
tion, which is the width of the Gaussian stateL(z) under the
05360
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above-mentioned approximation. The effective 2D nonlin
coupling strength isg2D5g*dzuL(z)u45gAp/j. Conse-
quently,

L1r5
px0

2Ik0

2\c S L

2p D 2E d2k'†ñ~2k'!,@ ñ~k'!,r#‡S L

2p D
3E dkzñ

2~kz!d~ uk1k0u2k0!. ~9!

By assuming that the typical length of the BEC in thez
direction is much larger than the wavelength of the incom
laser, i.e.,j@l, we can calculate the value of the last int
gral, and it is equal to exp(2j2k'

4 /4k0
2). Our final result for

the phase-diffusion contribution to the reduced master eq
tion in the imaging plane is written as

L1r5E d2r 1E d2r 2K~r12r2!†n~r1!,@n~r2!,r#‡,

~10!

wheren(r )5C†C(r ) is the 2D density operator andK is the
measurement kernel,

K~r !5
px0

2k0I

2\c E d2k exp~2j2k4/4k0
21 ik•r !. ~11!

Equation~10! preserves the total number of atoms and c
responds to a quantum nondemolition coupling between
atom and the optical fields@21,22,26–28#. If the measure-
ment kernel were a local one,K(r12r2).d(r12r2), Eq.
~10! would reduce to a Lindblad equation for the measu
ment of an infinite number of densitiesn(r ). This assumes
that no spatial correlation is established by the photon de
tion. However, the ultimate resolution limit in the imagin
system depends on the photon wavelength, regardless o
pixel density of the detecting camera. The resolution len
scale follows from Eq.~11! as a width of the kernel,

Dr 5~2p2j/k0!1/25~pjl!1/2, ~12!

the geometrical average of the light wavelength and the c
densate thicknessj. Equation~10! can then be rewritten a
L1r5g1†n,@n,r#‡, where g1 is the phase-diffusion rate
given by

g15
px0

2k0I

2\c E d2kuf~k!u2uf~2k!u2expS 2
j2k4

4k0
2 D .

~13!

We estimate its magnitude assuming a Gaussian profile in
x-y plane, i.e.,uf(k)u25exp(2a2k2/2), obtaining

g15
p5/2x0

2k0
2I

2\cj
expS a4k0

2

j2 D F12erfS a2k0

j D G' p2x0
2k0I

2\ca2
,

~14!

where the last step holds for a well-localized condensate,
a2k0 /j@1.
4-3
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Let us now calculate the depletion contribution to t
master equation for the condensate. We split the field a
hilation operator into a term describing the condensate
another associated to the noncondensed particles, i.ec
5cC1cNC. We shall assume that the noncondensed p
ticles belong to the continuum, so that their spectrum is t
of a free particle\Vq5\2q2/2m. Indeed, photons have larg
momenta with respect to the momenta of trapped atoms
even if a small percentage of the photon momentum is
sorbed by the atom, the atom is promoted into a high-ene
a
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a
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xt
m
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ha
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unbounded state. Let us expand both field operators in te
of annihilation operators as

cC~x,t !5bCfC~x,t !,

cNC~x,t !5
1

AL3 (
q

exp~2 iVqt1 iq•x!bq , ~15!

wherefC is the condensate wave function. We get
L2r5
px0

2

8cL6 (
kpq

Avkvp (
k8p8q8

Avk8vp8d~Vq82ck81cp8!

3$exp@ i t ~Vq2ck1cp!#f̃C~q1p2k!f̃C* ~q81p82k8!TrR†ap
†akbq

†bC,@ak8
† ap8bq8bC

† ,r#‡

1exp@2 i t ~Vq2ck1cp!#f̃C* ~q1p2k!f̃C~q81p82k8!TrR†ak
†apbqbC

† ,@ap8
† ak8bp8

† bC,r#‡%. ~16!
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Here the trace is taken over the reservoir of the condens
which in this case consists of the noncondensed particles
the photons. The above expression contains depletion
cesses, in which a photon interacts with a particle in
condensate and, as a result, that particle is kicked out of
condensate. It also contains feeding processes, in which
reverse mechanism may take place. When one assumes
in the initial state of the noncondensate the plane waves
empty, only the depletion process is relevant. In this hypo
esis, we find

L2r5g2~2bCrbC
†1 1

2 $bC
†bC,r%!, ~17!

whereg2 is the depletion rate,

g25
px0

2I

4\cL3 S L

2p D 6E d3pd3q vpuf̃C~q1p2k0!u2

3d~Vq2ck01cp!. ~18!

We evaluateg2 in the thick condensate limit (j@k0
21) by

approximating uf̃C(q1p2k0)u2'(2p/L)3d(q1p2k0),
and then, by using the fact thatVq!ck0, we obtain

g25
x0

2k0
3I

8p\c
. ~19!

Similar relationships have been obtained in other conte
namely the nondestructive monitoring of two-mode syste
with either an internal@21# or external@22# degree of free-
dom, the dynamics of an atom laser subjected to feedb
@29#, and the multimode imaging analyzed in@28#. In all
these cases, despite the quite different physical setups, p
te,
nd
o-
e
he
he
that
re
-

s,
s

ck

se-

diffusion coefficients in the corresponding Lindblad mas
equations present the same scaling on the common pa
eters, such as the light intensity and its detuning with resp
to the atomic transition. From Eqs.~14! and~19!, we see that
the depletion rate is much bigger than the phase-diffus
rateg2 /g15a2/pl2.102@1, in accordance with Ref.@28#.
We estimate the magnitude of both rates using the follow
parameters for the condensate and its imaging, relevan
the case of87Rb: l5780 nm, x0510223 m3, laser inten-
sity I 51024 mW/cm2, and a typical size in thex-y plane of
a510 mm. Theng151026 s21 andg251025 s21, corre-
sponding to phase-diffusion and depletion times oft15g1

21

5105 s and t25g2
215104 s, respectively. Although the

depletion rate is larger than the phase-diffusion rate, this
process can dominate because of their different scaling w
the total number of condensed particles in the master eq
tion. Indeed, the first is linear inN ~as any single-particle
scattering rate!, whereas the second one is quadratic~due to
the double commutator forn present in the phase-diffusio
Lindblad term!, so for a large number of particles~such as
N5107), phase diffusion occurs on a faster time scale th
depletion. This also confirms the conventional wisdom t
macroscopic coherent states are more fragile with respe
decoherence. Moreover, in various situations such as im
ing of condensates with nontrivial topological pattern
depletion acts uniformly just scaling the atomic dens
while phase diffusion can change the pattern, as we will
soon. For these reasons, we will focus in the following on
phase-diffusion contribution alone.

III. STRONG MEASUREMENT: MEASUREMENT-
INDUCED NUMBER SQUEEZING

We will consider in the following the effect of stron
measurements on the quantum state of the condensate.
has already been described in detail elsewhere@20#, thus here
4-4
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we only summarize the main results and their link to t
following considerations. By neglecting the depletion ter
the master equation for the condensate takes the formṙ5
(2 i /\)@H,r#2L1r. This equation preserves the total num
ber of atoms in the condensate and corresponds to a qua
nondemolition measurement of the atomic density via
optical fields. In order to get an insight into the equation,
introduce a two-dimensional lattice with the lattice const
set by the kernel resolutionDr . In this way, we get

dr

dt
52

i

\ F2\v (
^k,l &

Ck
†C l1V,rG2S(

l
†nl ,@nl ,r#‡.

~20!

Here C l is an annihilation operator andnl5C l
†C l is the

number operator at a lattice sitel. The frequency of hopping
between any nearest-neighbor sites^k,l & is v'\/2mDr 2,
which is \21 times the characteristic kinetic energy. Th
potential-energy operator isV5( l(Ulnl1Gnl

2), where
Ul is the trapping potential andG5g2D /Dr 2. The
effective measurement strength isS'*d2rK (r )/Dr 2

5(2p/Dr )2(px0
2k0I /2\c). In order to solve this equation

we use an unraveling in terms of pure statesuC& such that
r5uC&^Cu, where the overline denotes the average over
unraveling stochastic realizations. The pointer states of
~20! are not changed by the chosen unraveling@30#. The pure
states can be expanded in a Fock basis per site,uC&
5($Nl %

c$Nl %
u$Nl%&, and the amplitudesc$Nl %

satisfy the fol-
lowing stochastic Schro¨dinger equation~written in the Stra-
tonovich convention!:

d

dt
c$Nl %

52
i

\ (
$Nl8%

h$Nl ,N
l8%c$Nl8%2

i

\
V$Nl %

c$Nl %

1c$Nl %(l
@2S~Nl2nl !

21Ss l
21~Nl2nl !u l #,

~21!

where the homodyne noises have averagesu l(t)50 and
u l 1

(t1)u l 2
(t2)52Sd l 1 ,l 2

d(t12t2). Herenl5($Nl %
Nl uc$Nl %

u2,

s l
25($Nl %

(Nl2nl)
2uc$Nl %

u2, h is the matrix element of the

hopping Hamiltonian, andV$Nl %
5( l(UlNl1GNl

2) is the po-

tential energy. When there is no hopping term (h50), an
exact solution to this equation as a product of Gaussian-
wave functions is written as

c$Nl %
~ t !5exp~ iw$Nl %

!expS 2
i

\
V$Nl %

t D
3)

l

1

@2ps l
2~ t !#1/4

expS 2
@Nl2nl~ t !#2

4s l
2~ t !

D .

~22!

The population mean value per sitenl(t) does a random
walk, while its dispersion decreases ass l

2(t)5s l
2(0)/@1

14s l
2(0)St#. Here s l

2(0) is the initial dispersion in the
05360
,
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e
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number of atoms per site, and it scales asN for an initial
coherent state. Thus, the measurement drives the qua
state of the condensate to a Fock state. When tunneling
tween different lattice sites is allowed (hÞ0), localization in
a Fock state is inhibited due to a competition between
measurement, which drives localization, and hopping, wh
tries to drive the state of the condensate towards cohe
states. When measurement outweighs hopping, the final
of the BEC is a number squeezed state. The time scal
which squeezing is achieved is given by

tsq5
1

nlS
~23!

and the associated dispersion in the number of atoms per
for the asymptotic squeezed state is

s l5~vnl /S!1/4. ~24!

In a coherent state, the number fluctuations per site are P
sonian, s l5nl

1/2. The state is squeezed when (vnl /S)1/4

,nl
1/2, i.e., sub-Poissonian atomic number fluctuations. T

condition defines the strong measurement as

nlS

v
.1. ~25!

Number squeezing of a Bose condensate has been ex
mentally observed in an optical lattice in@31#. Our situation
has an important difference from the latter case: since
squeezing is driven by the~Lindblad! measurement term, th
evolution into such states is irreversible, even after remo
of the imaging photon field. From this viewpoint, ou
squeezing technique is similar to the spin squeezing thro
quantum nondemolition measurements proposed in@32# and
demonstrated in@33#. Of course, the system will eventuall
drift towards coherent, classical states due to the interac
with the external environment and the related decohere
@34#, for instance due to the thermal component or resid
background gas in the trapping volume.

IV. WEAK MEASUREMENT: STOCHASTIC GROSS-
PITAEVSKII EQUATION

Unraveling the Lindblad equation derived above leads
the limit of weak measurements, to a stochastic equation
the condensate wave function. In the mean-field approxim
tion, this equation becomes the analog of the~deterministic!
Gross-Pitaevskii equation for the unmeasured system. F
Eqs.~10! and~11! and ignoring the depletion term2L2r we
obtain a continuum version of the master equation,

dr

dt
52

i

\
@H,r#2E d2r 1

3E d2r 2K~r12r2!†n~r1!,@n~r2!,r#‡, ~26!

whereH is the self-Hamiltonian of the system ofN atoms in
a 2D trap,
4-5
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H5E d2r S 2
\2

2m
“C†

“C1U~r !C†C

1
g2D

2
C†C†CC D . ~27!

A nonlinear stochastic~Itô! unraveling of the master equa
tion ~26! is

duC&52
i

\
dtHuC&

2dtE d2r 1E d2r 2K~r12r2!Dn~r1!Dn~r2!uC&

1E d2r dW~r !Dn~r !uC&. ~28!

Here Dn(r )5n(r )2^Cun(r )uC& and the Gaussian noise
have correlators

dW~r !50,
~29!

dW~r1!dW~r2!52dtK~r12r2!.

This unraveling corresponds to phase contrast measure
of the density of the condensate. The evolution ofuC& given
by Eq. ~28! describes a single realization of the experime
@23,35–37#.

For a single atom,N51, described by a wave functio
f(t,r )5^r uC&, the stochastic Schro¨dinger equation takes
the form

df~r !52
i

\
dtF2

\2

2m
¹21U~r !Gf~r !

1FdW~r !2E d2r 8uf~r 8!u2dW~r 8!Gf~r !1C.

~30!

The second term in brackets follows from the last term in E
~28!, while the countertermC comes from the second term o
the right-hand side~RHS! of Eq. ~28!. The latter is necessar
to conserve the norm*d2r uf(r )u251, and it is given by

C5dtF2K~0!12E d2r 1K~r2r1!uf~r1!u2

2E d2r 1E d2r 2uf~r1!u2K~r12r2!uf~r2!u2Gf~r !.

~31!

This counterterm is highly nonlocal inf(r ). Fortunately, to
implement the stochastic terms numerically one can use
05360
ent
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duf~r !u252 dtFdW~r !2E d2r 8uf~r 8!u2dW~r 8!G uf~r !u2

1FdW~r !2E d2r 8uf~r 8!u2dW~r 8!G2

uf~r !u2

1@Cf* ~r !1c.c.#

52 dtFdW~r !2E d2r 8uf~r 8!u2dW~r 8!G uf~r !u2,

~32!

where theC was used to cancel out the average of the s
chastic terms squared. The stochastic terms affect dire
only the modulus off(r ), so Eq.~32! is all that one needs to
implement them. Note also that Eq.~32! manifestly con-
serves the norm.

Let us now analyze the case of an arbitrary number
atoms. For a weak measurement, when the squeezing o
quantum state is small, one can approximate the stocha
conditional state ofN atoms in Eq.~28! by a product mean-
field state,

^r1 , . . . ,rNuC&5)
i 51

N

f~r i !, ~33!

with all the N atoms in the same condensate wave funct
f(t,r ). We assume that, under the evolution given by E
~28!, the state of theN atoms remains in a product state E
~33! with a time-dependentf(r ,t). In order to derive a sto-
chastic Gross-Pitaevskii~SGP! equation for the condensat
wave functionf(r ), we study the different terms in Eq.~28!
separately. The stochastic term proportional todW on the
RHS of Eq.~28! involves only a one-body operator

Dn~r ![n~r !2^Cun~r !uC&5 (
k51

N

d~r2r k!2Nf* f~r !,

~34!

so the position representation of this term is the same as
the N51 atom,

FdW~r !2E d2r 8uf~r 8!u2dW~r 8!Gf~r !, ~35!

compare Eq.~30!.
The contribution arising from the second term on the R

of Eq. ~28! for N.1 might be expected to be different from
that corresponding to theN51 case because the operat
Dn(r1)Dn(r2) contains a two-body operatorn(r1)n(r2), so
that one could think it scales asN2. However, the operato
Dn(r1)Dn(r2) is in fact much more weakly dependent onN.
Indeed, in the weak measurement regime we are conside
the state of the condensate is described by a coherent
and therefore number fluctuations are well approximated
the Poissonian statistics. Hence, in the product state Eq.~33!,
4-6
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^CuDn(r1)Dn(r2)uC&5O(N). The operatorDnDn scales
with N like a one-body operator. Hence the contribution fro
this operator to the SGP equation is the same as forN51.
We can see this explicitly by calculating the position rep
sentation of the second term on the RHS of Eq.~28!. First we
ccompute the left-hand side of Eq.~28! using the ansatz Eq
~33!. To order O(dt), the change of the wave function
given by

d@f~r1!•••f~rN!#5 (
k51

N

df~r k! )
mÞk

f~rm!

1(
kÞ l

df~r k!df~r l ! )
mÞk,l

f~rm!.

~36!

We use Eq.~35! and the correlator of the noises Eq.~29! to
evaluate the noise averages in Eq.~36!, and then we projec
the result ontof* (r1)•••f* (rN). We define asL the result-
ing projection, which reads

L5NE d2r f!~r !df~r !. ~37!

In a similar way, project the second term on the RHS of E
~28! onto f!(r1)•••f!(rN). We callR the result,

R52dtE d2r 1f* f~r1!•••E d2r Nf* f~rN!

3E d2r 8E d2r 9K~r 82r 9!F (
k51

N

d~r k2r 8!

2Nf* f~r !GF(
l 51

N

d~r l2r 9!2Nf* f~r !G
52Ndt K~0!E d2r f* ~r !f~r !

1NdtE d2r 8E d2r 9p~r 8!K~r 82r 9!p~r 9!, ~38!

wherep(r )5f* (r )f(r ). As we can see,R5O(N) just like
L5O(N), and there are no two-body termsO(N2). Compar-
ing L/N with R/N, we see thatdf(r ) is given by an expres
sion that does not depend onN. Hence, as we have alread
mentioned, the measurement terms in the stochastic Gr
Pitaevskii equation are the same as in the stochastic Sc¨-
dinger equation forN51.

Finally, we derive this interaction term in the same way
we derived the measurement term. In the position repre
tation, we project the interaction term (g2D/2)C†C†CCuC&
contained inHuC& in Eq. ~28! onto f* (r1)•••f* (rN) and
obtain

Rint52
i

\
g2DN~N21!E d2r f* f* ff5O~N2!.

~39!
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Again, comparingL/N with Rint /N we get the interaction
term.

The final expression for the Itoˆ SGP equation reads

df~r !52
i

\
dtF2

\2

2m
“

21U~r !1~N21!g2Duf~r !u2Gf~r !

1FdW~r !2E d2r 8uf~r 8!u2dW~r 8!Gf~r !1C. ~40!

The only difference with respect to the case ofN51, com-
pare Eq. ~30!, is the usual interaction term (N
21)g2Duf(r )u2.

As a final remark, we mention that stochastic nonline
Schrödinger equations have been proposed and studied f
quite different goal, namely to describe single trajector
through unraveling of the exactN-body quantum evolution
of a boson system@38#. In the latter case, the interpretatio
of the underlying stochasticity is obtained in terms of t
randomness attributable to each quantum trajectory, to
confronted with the stochasticity that in our case is inste
due to the opening of the condensate to a particular envi
ment, namely the measurement apparatus.

V. SGP EQUATION VERSUS EXACT QUANTUM
EVOLUTION: MEASUREMENTS IN A DOUBLE WELL

In this section, we want to test the validity of the SG
equation in a significant but simple situation. To this end,
consider the double-well problem in the two-mode appro
mation, and compare the quantum dynamics including
measurement backaction with the dynamics given by
SGP equation. The Hamiltonian of the model is

H5e~a1
†a11a2

†a2!2\v~a1
†a21a2

†a1!

1
G

2
@~a1

†!2a1
21~a2

†!2a2
2#, ~41!

wheree is the mode frequency~assumed to be the same fo
both modes!, v is the tunneling angular frequency, andG is
the two-particle interaction strength. We perform pha
contrast imaging on each site, and we assume that the ke
resolution is much shorter than the distance between site
that there is no cross term due to the measurement. Theˆ
version of the stochastic Schro¨dinger equation for the stat
ket reads

duCQ&5dtF2
i

\
H2

S

2
~n12^n1&!22

S

2
~n22^n2&!2G uCQ&

1dW1~n12^n1&!uCQ&1dW2~n22^n2&!uCQ&,

~42!

where the noise satisfiesdWa50 anddWadWb52Kabdt,
with a,b51,2, andKab5Sdab is the measurement kerne
4-7
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FIG. 1. Comparison between the SGP and the exact quantum evolution for weak measurements on a noninteracting Bose cond
populationn(t) in a given well is plotted as a function of time for a single stochastic realization, expressed in units of cycles of th
oscillations. The total number of particles isN5100. ~a! The SGP evolution and the quantum one coincide for an effective measure
strengthnS/v51021 even for times much greater than 1/nS510/v. ~b! The departure of the SGP dynamics from the exact one at the
1/nS51/v is evident for a stronger measurement couplingnS/v51.
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By assuming a total ofN atoms, distributed between the tw
sites,N5N11N2, we can expand the state in terms of Fo
states at each well,

uCQ&5 (
k50

N

ck~ t !uk,N2k&. ~43!

We solve numerically the corresponding equation for
coefficientsck(t) starting from a mean-field state with equ
mean populations in each well,uC& t505(1/AN!) @(1/A2)a1

†

1(1/A2)a2
†#Nu0&. The equation provides us with the fu

quantum evolution including the measurement backact
We want to compare it with the one that results from t
stochastic GP equation. The GP state is

uCGP&5
1

AN!
@f1~ t !a1

†1f2~ t !a2
†#Nu0&, ~44!

where the wave functionsf1 andf2 satisfy the following set
of Itô SGP equations, which follow from Eqs.~31! and~40!:

df152
i

\
dt$@e1~N21!Guf1u2#f12vf2%

1dW1~12uf1u2!

1Sdt@2112uf1u22~ uf1u41uf2u4!#,
~45!

df252
i

\
dt$@e1~N21!Guf2u2#f22vf1%

1dW2~12uf2u2!

1Sdt@2112uf2u22~ uf1u41uf2u4!#,

and we take the same initial state as in the quantum ev
tion, namely a coherent statef1(0)5f2(0)51/A2 with bal-
anced populationsn1(0)5n2(0). In Fig. 1, we compare the
05360
e

n.

u-

time evolution of the quantum and SGP mean population
one well. In these simulations, the total number of partic
was N5100, and the nonlinear self-coupling wasG50. In
this case, the Hamiltonian involves only one-body terms,
the mean-field evolution~based on coherent states! must ex-
actly coincide with the quantum one for the case of ze
measurement (S50). For small measurement strength
nS/v!1 ~heren denotes the average number of particles
site!, the quantum state of the condensate is still, to a h
degree of accuracy, a coherent state, so the SGP evolu
and the quantum one coincide. In Fig. 1~a!, we see that the
agreement is good even for times much larger than 1/nS.
This time scale is relevant for the strong measurement c
of the previous section, since it sets the time after which
asymptotic number squeezed state is reached. As we incr
the measurement strength and reachnS/v>1 @see Fig. 1~b!#,
the mean number of particles per well given by the SGP
the quantum evolution depart appreciably. This is not s
prising since such strong measurements squeeze the qua
state of the condensate, driving it outside the description
terms of coherent states, i.e., the associated basis for
Gross-Pitaevskii equation.

The Gross-Pitaevskii evolution can depart from the qu
tum one not only due to the measurement backaction but
due to the nonlinearity of the interactions. In Fig. 2~a!, we
show the SGP and quantum evolutions forS/v51023 and
G/v51023, corresponding to the same initial state as
previous figures. We see that the inclusion of the nonlinea
causes the SGP evolution to depart from the quantum one
gain further insight, we introduce a quantity which measu
the depleted fraction of atoms from thebestmean-field state,
i.e., a mean-field state that is the closest to the exact quan
state. Its definition is

D5 min
$A,f%

S 12
1

N
^CQuc†cuCQ& D , ~46!
4-8
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FIG. 2. Comparison between the SGP and the exact quantum evolution for a weakly interacting (G/v51023) Bose condensate subjecte
to a weak measurementnS/v551022. ~a! The population differenceDn(t)5n2(t)2n1(t) is plotted for a single stochastic realizatio
Initially the condensate is in a coherent state with equal populations in each mode,n1(0)5n2(0)550. ~b! Depletion from a mean-field stat
for the same realization as in~a!.
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where the operatorc is c5AAa11eifA12A2a2. In Fig.
2~b!, we plot this depletion for the same simulation of F
2~a!. The depletion in Fig. 2~b! is small ~less than one atom
is depleted from the condensate!, but, as we see in Fig. 2~a!,
the SGP evolution departs from the exact evolution. T
departure is attributable to the inclusion of the nonzeroG.

In Fig. 3~a!, we show the GP and quantum evolution f
S50 and G/v51023. Since no measurements are p
formed, an initial balanced population@n1(0)5n2(0)#
would remain balanced for all times, both at the GP a
quantum level. For this reason, we take an initial unbalan
population,n1(0)/n2(0)5 3

2 , which due to the hopping term
triggers Rabi oscillations between the two wells~just as the
measurement did when we took initial balanced popu
tions!. It follows from the figure that the GP dynamics d
parts from the quantum one. We plot in Fig. 3~b! the deple-
tion corresponding to Fig. 3~a!. Again, this depletion remain
small ~less than one atom is depleted from the condensa!.
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As we can see in Figs. 2 and 3, both the SGP and
evolutions depart from the exact evolution even in the we
measurement and interaction limits when the depletion fr
the condensate is small. The derivation of the backac
terms in the SGP equation requires only one assumpt
namely that all the atoms are in the condensate. In cont
the derivation of the interaction terms~both for SGP and GP
equations! not only assumes that all the atoms are in t
condensate but also makes further approximations to
scribe the evolution of the condensate wave functionf. This
is why GÞ0 causes both the SGP and GP evolutions
depart from the exact quantum evolution even for negligi
depletion. However, even after the departure, the SGP
GP evolutions remain qualitatively similar to the exact ev
lution, see Figs. 2~a! and 3~a!.

To summarize, the accuracy of the SGP equation is l
ited by the weak measurement condition,nS/v,1, and by
the nonlinear interaction. For a weak measurement, the
tate

FIG. 3. Comparison between the standard GP and the exact quantum evolution for a weakly interacting (G/v51023) unmeasured Bose

condensate.~a! The population differenceDn(t)5n2(t)2n1(t) is plotted as a function of time. Initially the condensate is in a coherent s
with unbalanced populations,n1(0)560, n2(0)540. ~b! Depletion from a mean field state for the same realization as in~a!.
4-9
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curacy of the SGP equation is the same as that of the
equation. In the next section, we apply the SGP equatio
show how the measurement can trigger the unwinding o
dark soliton@39,40# in a realistic experimental setup.

VI. MEASUREMENT-INDUCED UNWINDING
OF A DARK SOLITON

Once we delimit the validity of the stochastic Gros
Pitaevskii equation in the simple situation of a two-mo
system, we can apply it to the more complex case of imag
of a condensate state with a nontrivial phase such as a
ton. Even in the limit of weak measurement, with the so
tion still approximable in terms of Gross-Pitaevskii cohere
states, the effect of the measurement is present and af
the observable conjugate to the atom number, i.e., the p
of the condensate. As an example of application of
SGPE, let us consider an isotropic harmonic 2D trapp
potential V(r )5(mV2/2)(x21y2). The condensate is as
sumed to be in the Thomas-Fermi limit of strong repuls
interaction, where the ground-state wave function can
well approximated by

fGS~r !5Am2V~r !

Ng2D
. ~47!

The constantm5VANg2Dm/p, the chemical potential, is
chosen so that the wave function is normalized to 1. Let
use as the initial state a dark soliton@39# imprinted on the
Thomas-Fermi ground state,

f~ t50,r !5tanhS x

l DAm82V~r !

Ng2D
. ~48!

Herel is the healing length at the peak density in the grou
state~47!.

In our numerical simulations, we assume the followi
parameters relevant for87Rb: massm51.4310225 kg, scat-
tering lengtha55.8 nm,x0510223 m3, and wavelengthl
5780 nm. The width of the GaussianL(z) is assumed to be
j510 mm and the healing lengthl 50.6 mm. With these
parameters, the resolution of the kernel isDr 55 mm. We
assume a 2D harmonic trap frequencyV52p310 s21.
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With N553105, we get a 2D Thomas-Fermi radius of 3
mm. We also assume a laser intensity ofI 51024 mW/cm2.

The former parameters give a weak measurement stre
in the sense discussed in Secs. III and IV, so that the us
the SGP equation is justified. Indeed, this continuous pr
lem can be mapped on the lattice model, Eq.~20!, where the
lattice constant is the kernel resolutionDr . Given the
Thomas-Fermi radius of 31mm, andDr 55 mm, we estimate
the lattice to be composed of 100 sites with an average
n55000 atoms per site. The measurement strength is e
to S5731025 s21 and the effective hopping frequency fo
the lattice model is v514 s21. Therefore, nS/v'2
31022!1, thus confirming a weak measurement regime

To simulate the continuum SGP equation~40!, we dis-
cretized it using a lattice constant 2p times smaller than the
kernel resolutionDr . The program uses a split-step metho
the fast Fourier transform was used to carry out the ti
integration of the kinetic term and of the nonlocal term
involving the kernel, and the potential and nonlinear co
pling terms were integrated in time in the position repres
tation. A cross section along thex axis through the probabil-
ity density of the initial state~48! is shown in~a! of Fig. 4.
Cross sections through probability densities at later tim
after the probe light beam has been sent on the conden
are shown in cases~b! and~c! of Fig. 4. For comparison, the
time evolution without the measurement does not resul
any soliton unwinding.

The soliton unwinds after roughly 50 ms. This time
much shorter than the depletion timet25104 s discussed a
the end of Sec. II. The measurement induces soliton unw
ing much earlier than any detectable depletion of atoms
curs. Figure 4 suggests that the unwinding will manifest
self by filling up the soliton core with atoms. Such a grayi
of the dark soliton can also occur through a different mec
nism that involves collisions between condensate atoms
Ref. @41#, it was demonstrated that the dark soliton can g
on a time scale of tens of ms because its core fills up w
noncondensed atoms~quantum! depleted from the conden
sate as a result of atomic collisions between condensed
oms. This is supported by recent results showing that
depleted atoms are strongly concentrated in the soliton c
@42#. This quantum depletion process does not unwind
or
initially
FIG. 4. Soliton unwinding during a continuous imaging. The figures show the cross section of the 2D probability densityuf(x,y)u2 of
the Bose condensate along thex axis att50 ms ~a!, t550 ms~b!, andt5200 ms~c! since the beginning of the continuous imaging f
a single realization solved through the SGP. The dark soliton is graying progressively and in the third profile there is no trace of the
imprinted pattern. The laser intensity isI 51024 mW/cm2, and the condensate wave function is normalized to unity in 2D.
4-10
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soliton: the condensate remains in the soliton state wit
phase jump ofp. The phase jump or its unwinding could b
detected by interference between two condensates, on
them in a ground state and the other with a soliton@43#. A
simpler way to verify that the observed graying is due to
measurement-induced unwinding is to change the meas
ment strength in a certain range and see if the graying t
depends on the imaging laser intensity. We simulated
soliton unwinding for a range of measurement strengths. F
ure 5 shows the unwinding timet versus the laser intensityI.
The timet is defined as that for which the density atx50 in
Fig. 4 achieves 10% of the maximal density. Similar cons
erations can also be applied to the phase scrambling
vortex state. Thus, analogous to finite-temperature effect
the vortex lifetime studied in@17#, one could study zero
temperature vortex lifetimes due to the continuous meas
ment process.

VII. CONCLUSIONS

Quantum measurement theory has been applied to the
persive imaging of a Bose-Einstein condensate. In the str
measurement limit, the condensate is irreversibly driven i
nonclassical states with reduced number fluctuations. In
opposite limit of weak measurement, the condensate ca
approximately described for short time scales through a
chastic counterpart of the Gross-Pitaevskii equation. The
ter has been applied for the study of the dynamics induced
dispersive imaging on a condensate prepared in a so
state. The proposed model, besides allowing to intention
design selective manipulation of the condensate state~for
instance to quench vortices without introducing apprecia
J,
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depletion!, could also lead to a better understanding of qu
tum phase transitions@44,45# in Bose condensates@46,47#.
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FIG. 5. Average unwinding timet as a function of the lase
intensityI. Each point is an average over ten single stochastic r
izations. The point corresponding to the highest value for the int
sity is still within the weak measurement limit.
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